Unique Paths
35% Accepted
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time.
The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Note
- m and n will be at most 100.
- Dynamic Programming
- Array
思路
- 这道题跟minimum path sum基本一样,无非就是换了初始化
public class Solution {
public int uniquePaths(int m, int n) {
int[][] sum = new int[m][n];
for (int i = 0; i < m; i++) {
sum[i][0] = 1;
}
for (int i = 0; i < n; i++) {
sum[0][i] = 1;
}
for (int i = 1; i < m; i++) {
for (int j = 1; j< n; j++) {
sum[i][j] = sum[i-1][j] + sum[i][j-1];
}
}
return sum[m-1][n-1];
}
}
空间优化
public class Solution {
public int uniquePaths(int m, int n) {
int[][] dp = new int[2][n];
for (int i = 0; i < n; i++) {
dp[0][i] = 1;
}
for (int i = 1; i < m; i++) {
dp[i % 2][0] = 1;
for (int j = 1; j < n; j++) {
dp[i % 2][j] = dp[(i - 1) % 2][j] + dp[i % 2][j - 1];
}
}
return dp[(m - 1) % 2][n - 1];
}
}