Word Ladder
22% Accepted
Given two words (start and end), and a dictionary, find the length of shortest transformation sequence from start to end, such that:
Only one letter can be changed at a time
Each intermediate word must exist in the dictionary
Have you met this question in a real interview? Yes
Example
Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog",
return its length 5.
Note
Return 0 if there is no such transformation sequence.
All words have the same length.
All words contain only lowercase alphabetic characters.
思路
- level order遍历, BFS的level order就是三重循环
- 解法里边用到的 string to char/ char to string 值得复习
String
public class Solution {
public int ladderLength(String start, String end, Set<String> dict) {
if (dict == null || dict.size() == 0) {
return 0;
}
HashSet<String> hash = new HashSet<String>();
Queue<String> queue = new LinkedList<String>();
queue.offer(start);
hash.add(start);
int length = 1;
/*
典型的 BFS level order
*/
while(!queue.isEmpty()) {
length++;
int size = queue.size();
for (int i = 0; i < size; i++) {
String word = queue.poll();
for (String nextWord: getNextWords(word, dict)) {
if (hash.contains(nextWord)) {
continue;
}
if (nextWord.equals(end)) {
return length;
}
hash.add(nextWord);
queue.offer(nextWord);
}
}
}
return 0;
}
// replace character of a string at given index to a given character
// return a new string
private String replace(String s, int index, char c) {
char[] chars = s.toCharArray();
chars[index] = c;
return new String(chars);
}
// get connections with given word.
// for example, given word = 'hot', dict = {'hot', 'hit', 'hog'}
// it will return ['hit', 'hog']
// 去循环每个字母,而不是单词,因为单词可能很多,而字母就这么些,我们查找用hashmap o(1)就能找到,省下了很多时间
// 这get next words的整个过程时间复杂度 O(a*26*len) -> O(len)
// 这样整个程序的时间复杂度 也就是 n*dict.size()*word.length
private ArrayList<String> getNextWords(String word, Set<String> dict) {
ArrayList<String> nextWords = new ArrayList<String>();
for (char c = 'a'; c <= 'z'; c++) {
for (int i = 0; i < word.length(); i++) {
if (c == word.charAt(i)) {
continue;
}
String nextWord = replace(word, i, c);
if (dict.contains(nextWord)) {
nextWords.add(nextWord);
}
}
}
return nextWords;
}
}